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1 Introduction

Quick notes on ultrafilters and the Stone–Čech construction.

2 Filters and Ultrafilters

Definition. Let X be a set. A (proper) filter F on X is a family F ⊂ P(X) of subsets of X
satisfying

(1) ∅ /∈ F .
(2) X ∈ F .
(3) A, B ∈ F =⇒ A ∩ B ∈ F . (F is closed under finite intersection.)
(4) B ⊃ A ∈ F =⇒ B ∈ F . (F is upward closed.)

Intuitively, a filter helps us locate elements of X by scanning its subsets. Note that filters satisfy
the finite intersection property (FIP) : A1, . . . , An ∈ F =⇒

∩n
i=1 Ai ̸= ∅, and in particular,

it can never happen that A ∈ F and also Ac ∈ F .

Examples. (1) The trivial filter F = {X}.
(2) When X is infinite, the cofinite or Fréchet filter F = {A ⊂ X | Ac is finite}.
(3) Any element x ∈ X generates a principal (ultra)filter F = ⟨x⟩ = {x ∈ A ⊂ X}.
(4) More generally, given any family S ⊂ P (X) satisfying the FIP, the filter generated by S is

given by the upward closure of the finite intersections of S :

F = ⟨S⟩ = {∩n
i=1Ai ⊂ A ⊂ X | Ai ∈ S} .

Thus principal filters are equivalent to filters generated by singletons: ⟨x⟩ = ⟨{x}⟩.

Definition. A filter F is an ultrafilter if for any A ⊂ X, either A ∈ F or Ac ∈ F .

Hence an ultrafilter is a perfect element locator: either the element we seek is in a subset or its
complement.

Examples. (1) Neither the trivial filter nor the cofinite filter are ultrafilters (the former is clear;
for the latter, consider an infinite subset with an infinite complement).

(2) A principal filter ⟨x⟩ is an ultrafilter since any subset either contains x or does not.
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Ultrafilters are characterized by some finite union property analogous to the FIP that holds for
general filters:

Proposition 2.1. F is an ultrafilter if and only if A1, . . . , An /∈ F =⇒
∪n

i=1 Ai /∈ F .

Proof. If F is an ultrafilter and Ai /∈ F , then Ac
i ∈ F by the defining property of an ultrafil-

ter. Hence (
∪n

i=1 Ai)c =
∩n

i=1 Ac
i ∈ F since filters are closed under finite intersection. But then∪n

i=1 Ai /∈ F , again by the defining property of an ultrafilter.
Conversely, any A ⊂ X satisfies A ∪ Ac = X ∈ F , whence by the contrapositive of the finite

union property either A or Ac must belong to F . Thus F is an ultrafilter whenever that property
is satisfied.

Proposition 2.2. Any ultrafilter that contains a finite set is principal.

Proof. If an ultrafilter F contains {x1, . . . , xn} =
∪n

i=1{xi} then it must contain one of the {xi},
by the contrapositive of Proposition 2.1. Since filters are upward closed, this implies that ⟨xi⟩ ⊂ F
as subsets of P(X). Conversely, as F contains {xi}, any element of F must intersect {xi} lest the
FIP be violated. Hence F ⊂ ⟨xi⟩, and so F = ⟨xi⟩ is principal.

Corollary 2.3 (Ultrafilters on finite sets). Any ultrafilter on a finite set X is principal, and there
is a natural bijection between X and the set βX of ultrafilters on X.

Proof. By Proposition 2.2, any ultrafilter F ∈ βX has the form F = ⟨x⟩ for some x ∈ X, and
moreover x1 ̸= x2 =⇒ ⟨x1⟩ ̸= ⟨x2⟩ by the FIP. Hence X ∼= βX as sets.

As we will soon see, the set βX of ultrafilters on X may be endowed with a topology that
makes it into a universal compactification of X, viewing the latter as a discrete topological space.
Corollary 2.3 is then simply a restatement of the fact that a discrete space is finite if and only if it
is compact.

Let us now turn our attention to potentially infinite sets X. There, it is no longer true that
all ultrafilters are principal, but sadly there is no constructive way to obtain such non-principal, or
free, ultrafilters.1

Theorem 2.4 (Extension of filters to ultrafilters). Assuming the axiom of choice, any filter F on
a set X may be extended to an ultrafilter F (not uniquely).

Proof. The filters on X that are finer than F , i.e., those that are supersets of F in P(X), form
a poset P⊃F under set inclusion induced by P(X); we will apply Zorn’s lemma on this poset to
obtain a maximal element and prove that this is an ultrafilter.

First, let {Fi}i∈I be a chain, i.e., a collection of filters in P⊃F that are totally ordered by
inclusion. Then the ascending union

∪
i∈I Fi is an upper bound of the chain in P⊃F : it is finer

than F because all the Fi are and it is a filter, as we check:

(1) ∅ /∈
∪

i∈I Fi since ∅ /∈ Fi for all i.
(2) X ∈

∪
i∈I Fi since X ∈ Fi for all i.

1The more common and general definition is that a filter F is free if
∩

F = ∅. There exist non-free and non-
principal filters: the filter on N generated by the complements of even numbers is such an example. However, an
ultrafilter is free if and only if it is non-principal, so there is no harm in using our definition if ultrafilters are all we
care about.
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(3) A, B ∈
∪

i∈I Fi =⇒ A ∩ B ∈
∪

i∈I Fi since A, B lie in some common Fi, which is closed
under finite intersection.

(4) B ⊃ A ∈
∪

i∈I Fi =⇒ B ∈
∪

i∈I Fi since A lies in some Fi, which is upward closed.

Hence by Zorn’s lemma, P⊃F contains a maximal filter F , i.e., one which is not a proper subset of
any other element of P⊃F .

Suppose by way of contradiction that F is not an ultrafilter; then there exists A ⊂ X such that
A /∈ F and Ac /∈ F . Now each set in F , being non-empty, must intersect either A or Ac. But
an even stronger statement holds: at least one of A or Ac intersects all the sets in F . Indeed, if
this were not true then some B ∈ F would lie in A while some other C ∈ F would lie in Ac; but
then B ∩ C = ∅, contradicting the closure under finite intersection of the filter F . Without loss of
generality, we may thus assume that all of the members of F meet A. But then F ∪ {A} satisfies
the FIP, and the filter it generates is strictly finer than F , contradicting maximality. Hence F is
an ultrafilter extending F .

Finally, this extension is not unique in general: the trivial filter {X}, for instance, admits every
ultrafilter as an extension.

Note that the above process is non-constructive, in the sense that it relies on the axiom of choice
and does not provide us with an explicit example of a free (i.e., non-principal) ultrafilter.

Proposition 2.5. A free ultrafilter F on an infinite set X is always finer than the cofinite filter.

Proof. This says that any non-principal ultrafilter F contains all the cofinite sets in P(X), or,
taking the contrapositive, that if there exists a cofinite set A /∈ F , then F must be principal; but
this is just a restatement of what we already know. For if F does not contain the cofinite set A,
then since it is an ultrafilter it must contain its complement Ac, which is finite. Applying Corollary
2.2, the conclusion follows.

Hence ultrafilters on an infinite set X come in two very different varieties:

(1) Principal ultrafilters, which are generated by very small sets (singletons). There are as many
principal ultrafilters as there are elements of X.

(2) Free ultrafilters, which are generated by very large sets (cofinite sets). The cardinality of the
set of all free ultrafilters is strictly greater than that of the set of principal ultrafilters. In
fact, if |X| = κ, then one can show that the cardinality of the set βX of all ultrafilters on X
is |βX| = 22κ . Hence "most" ultrafilters are free, even though we cannot explicitly describe a
single one.

3 The Stone–Čech Compactification

3.1 Categorical preliminaries
Any set X may be thought of as a topological space by endowing it with the discrete topology.
More formally, let Set and Top denote the categories of sets and topological spaces, respectively.
"Discretization" is a functor D : Set → Top left adjoint to the forgetful functor F : Top → Set that
forgets about the topology of a topological space. This simply means whenever X is a set and Y is
a space, there is a natural correspondence

homTop(DX, Y ) ∼= homSet(X, FY )
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between continuous maps from DX to Y and functions from X to FY . This adjunction is really
just a restatement of the fact that any map from a discrete space is automatically continuous, and
it is equivalent to the following universal property: for any function f : X → Y , there is a unique
continuous map f : DX → Y making the following diagram commute:

DX

X Y

∃!f

f

(Here and henceforth I am abusing notation by not writing down forgetful functors all over the
place. In the diagram should really appear arrows f : X → FY and Ff : F (DX) → FY that live
in Set.)

The discretization DX is always Hausdorff, but it will never be compact unless X is finite. To
remedy this, we will construct a space βX which is both compact and Hausdorff and obtained from
X "universally". More precisely, if TopCH denotes the category of compact Hausdorff topological
spaces, our goal is to obtain a functor β : Set → TopCH which, in analogy to the discretization
functor above, is left adjoint to the forgetful functor F : TopCH → Set. The corresponding universal
property should look like this: for any function f from a set X to a compact Hausdorff space Y ,
there should exist a unique continuous map f : βX → Y making the following diagram commute:

βX

X Y

∃!f

f

Naturally, the construction of βX should also come with a suitable embedding X → βX (the
vertical arrow in the diagram).

3.2 Construction of the Stone–Čech compactification βX
As we hinted at earlier, the Stone–Čech compactification βX of any set (or discrete topological
space) X will consists of the set of all ultrafilters on X, endowed a topology that makes it a
universal compact Hausdorff space. Recall the following notion from point-set topology:

Definition. Let X be a set. A family B ⊂ P(X) of subsets of X is called a basis for a topology
on X if the following two conditions hold; in this case, elements of B are called basic open sets.

(1)
∪

B = X. (X is covered by basic open sets.)
(2) For all B1, B2 ∈ B, there exists some B3 ∈ B such that B3 ⊂ B1 ∩ B2. (Finite intersections

of basic open sets always contains basic open sets.)

Then X may be endowed with a natural topology, the topology generated by B, as follows:
declare U ⊂ X to be open whenever U may be expressed as a union of basic open sets. Thus

U is open in X ⇐⇒ There exists a family {Ui}i∈I of basic open sets such that U =
∪
i∈I

Ui.

The two conditions above guarantee that this is a topology on X.
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Definition (Topology of βX). If X is any set, let βX denote the set of all ultrafilters on X:

βX = {F ⊂ P(X) | F is an ultrafilter}.

The basic open sets for the topology on βX are those of the form

[A] = {F ∈ βX | A ∈ F},

where A ranges over all subsets of X. Thus the assignment A 7→ [A] is a mapping P(X) → P(βX).

Before proving that this defines a topology which makes βX into a compact and Hausdorff space,
we will prove certain algebraic properties about [A] which will come in handy in the subsequent
manipulations.

Lemma 3.1 (Algebraic properties of [·]). Let A, B ∈ P(X). Then the map [·] : P(X) → P(βX)
defined above has the following properties:2

(a) [∅] = ∅.
(b) [X] = βX.
(c) [A ∪ B] = [A] ∪ [B].
(d) [A ∩ B] = [A] ∩ [B].
(e) A ⊂ B ⇐⇒ [A] ⊂ [B].
(f) A = B ⇐⇒ [A] = [B].
(g) [Ac] = [A]c.

Proof. (a) [∅] = ∅ since no ultrafilters contain the empty set.
(b) [X] = βX since all ultrafilters contain X.
(c) [A ∪ B] ⊂ [A] ∪ [B] is a consequence of the "finite union property" for ultrafilters described

in Proposition 2.1. The converse [A ∪ B] ⊃ [A] ∪ [B] holds by the upward closure property of
filters: if F contains A or B then it must contain A ∪ B.

(d) [A ∩ B] ⊂ [A] ∩ [B] holds by the upward closure property of filters: if F contains A ∩ B then
it must contain A and B. The converse [A ∩ B] ⊃ [A] ∩ [B] holds because filters are closed
under finite intersection.

(e) A ⊂ B =⇒ [A] ⊂ [B] follows from (c) since

A ⊂ B ⇐⇒ A ∪ B = B =⇒ [A] ∪ [B] = [A ∪ B] = [B] ⇐⇒ [A] ⊂ [B].

Conversely, assume [A] ⊂ [B], i.e. every ultrafilter containing A also contains B. Let x ∈ A be
arbitrary; then the principal ultrafilter F = ⟨x⟩ contains A, so by hypothesis it also contains
B. But this simply says that x ∈ B. Hence we have shown that any x in A is also in B,
whence A ⊂ B.

(f) A = B ⇐⇒ [A] = [B] follows immediately from (e) and antisymmetry of the partial order
relation ⊂.

(g) [Ac] = [A]c follows from the first four properties: (b) and (c) imply that

[A] ∪ [Ac] = [A ∪ Ac] = [X] = βX

while (a) and (d) imply that

[A] ∩ [Ac] = [A ∩ Ac] = [∅] = ∅.

2Concisely, [·] is an injective homomorphism of Boolean algebras.
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Lemma 3.2. The family B = {[A] ⊂ βX | A ∈ P(X)} is a basis for a topology on βX.

Proof. (1) Take A = X; then by of Lemma 3.1(b), [X] = βX already covers the whole space.
(2) By Lemma 3.1(d), if A, B ∈ P(X) then the intersection [A] ∩ [B] = [A ∩ B] of basic open sets

is itself a basic open set.

Theorem 3.3. Endow βX with the topology generated by the basic open sets of the form [A]. Then:

(1) βX is compact.
(2) βX is Hausdorff.
(3) βX is totally disconnected.3
(4) X embeds as a dense subspace of βX by mapping x ∈ X to the principal ultrafilter ⟨x⟩ ∈ βX.4

Proof. (1) To prove compactness, it suffices to show that any cover of βX with basic open sets
admits a finite subcover. Assume by way of contradiction that this is not so; then there exists
a family {[Ai]}i∈I of basic open sets such that

βX =
∪
i∈I

[Ai] but βX ̸= [Ai1 ] ∪ · · · ∪ [Ain
]

for any finite collection of indices i1, . . . , in ∈ I. By Lemma 3.1(b)(c)(f), this is equivalent to

[X] ̸= [Ai1 ∪ · · · ∪ Ain
] or, dropping filters, X ̸= Ai1 ∪ · · · ∪ Ain

.

Taking complements, this simply says that ∅ ̸= Ac
i1

∩ · · · ∩ Ac
in

, i.e., the family {Ac
i }i∈I

satisfies the FIP; hence it generates a filter F = ⟨{Ac
i }i∈I⟩. Let F be an ultrafilter extending

F (Theorem 2.4). Then F ∈ βX =
∪

i∈I [Ai], so there exists some i ∈ I such that F ∈ [Ai],
i.e. Ai ∈ F . But by construction, Ac

i ∈ F ⊂ F . Since a filter cannot contain both a set and
its complement, this is the contradiction we seek.

(2) and (3) To prove that βX is Hausdorff we will separate any two distinct ultrafilters F , F ′ ∈ βX by
basic open sets. Since F ̸= F ′ by hypothesis, we may assume without loss of generality that
there is some A ∈ P(X) which belongs to F but not F ′. Since F ′ is an ultrafilter, this implies
that A ∈ F and Ac ∈ F ′, i.e., F ∈ [A] and F ′ ∈ [Ac] = [A]c. (This last equality is Lemma
3.1(g).) Thus the basic open sets [A] and [A]c separate F and F ′ as desired.
In fact, this argument shows that βX is totally disconnected, because [A] and [A]c provide
a disconnection between F and F ′, which are arbitrary points in the space βX. Thus any
distinct pair of points in βX cannot lie in the same connected component.

(4) To prove that the set of all principal ultrafilters is dense in βX it suffices to show that any non-
empty basic open set [A] ⊂ βX meets a principal ultrafilter. By assumption [A] is non-empty,
thus so is A (Lemma 3.1(a)(f)); pick any x ∈ A. Then {⟨x⟩} = [{x}] ⊂ [A] by Proposition 2.2
and Lemma 3.1(e), i.e., [A] contains the principal ultrafilter ⟨x⟩. This completes the proof.

3A space is totally disconnected if its connected components are singletons. A space satisfying the first three
properties of the Theorem is called a Stone space.

4A compact space in which X embeds densely is called compactification of X. Hence βX is a compactification
of X, the Stone–Čech compactification of X.
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3.3 Neighborhood filters, continuity and convergence
Before tackling the universal property of βX, let us see how to reformulate the basic topological
concepts of continuity and convergence in terms of filters. Recall that a neighborhood of a point
in a topological space is a superset of an open set that contains the point.

Definition (Neighborhood filter). Let X be a topological space and x ∈ X a point. The neigh-
borhood filter at x is given by

Nx = {x ∈ N ⊂ X | N is a neighborhood of x}

It is clear that Nx is upward closed, and it is closed under finite intersection because that
property is satisfied by open sets in a topological space. Hence Nx is a filter, and clearly Nx ⊂ ⟨x⟩.
Intuitively, the ultrafilter ⟨x⟩ contains perfect information about the point x, while the filter Nx

knows only about x what it can gather from its neighborhoods. But neighborhoods are all we need
to do topology!

Definition (Filter convergence). We say that a filter F on a topological space X converges to
x ∈ X (or that x is a limit of F) if Nx ⊂ F , i.e., if it contains all the neighborhoods of x. If this
is the case we will write F → x, or sometimes lim F = x when the limit is unique.

Thus a filter converges to x if it lies somewhere between the neighborhood filter Nx and the
"maximally convergent" ultrafilter ⟨x⟩.

Examples. (1) Both the filter Nx and the principal ultrafilter ⟨x⟩ converge to x.
(2) If X is discrete, then Nx = ⟨x⟩ is the only filter that converges to x.
(3) If X has the trivial topology, then Nx = {X} is the trivial filter for any x ∈ X, whence any

filter converges to every point in X.

Definition (Pushforward of (ultra)filters along maps). Let f : X → Y be a function between sets
and let F be a filter on X. Then

f∗F = {A ⊂ Y | f−1(A) ∈ F}

defines a filter on Y called the pushforward of F along f . If F is an ultrafilter then so is f∗F .
(That the pushforward really is an (ultra)filter follows from the fact that preimages preserve set
inclusion, intersection and complementation.)

Lemma 3.4. Pushforwards preserve the partial order on filters: F ⊂ F ′ =⇒ f∗F ⊂ f∗F ′.

Proof. If F ⊂ F ′ then

A ∈ f∗F ⇐⇒ f−1(A) ∈ F =⇒ f−1(A) ∈ F ′ ⇐⇒ A ∈ f∗F ′.

Recall that a function f : X → Y between topological spaces is continuous at x ∈ X if for
any neighborhood N of f(x), the preimage f−1(N) is a neighborhood of x. In terms of filters,
N ∈ Nf(x) =⇒ f−1(N) ∈ Nx, or equivalently Nf(x) ⊂ f∗Nx.
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Proposition 3.5 (Continuity in terms of filter convergence). Let X, Y be topological spaces and
x ∈ X a point. Then f : X → Y is continuous at x if and only if F → x implies f∗F → f(x), i.e.,
the pushforward along f preserves convergence.

Proof. Assume that f is continuous at x and F → x. The former means that Nf(x) ⊂ f∗Nx and
the latter means that Nx ⊂ F . By Lemma 3.4, f∗Nx ⊂ f∗F , whence Nf(x) ⊂ f∗F ; but this is just
the statement that f∗F → f(x).

Conversely, specializing the hypothesis (F → x) =⇒ (f∗F → f(x)) to F = Nx we obtain
f∗Nx → f(x), which once recast into the form Nf(x) ⊂ f∗Nx is just the definition of continuity.

3.4 Universal property of βX

First, here is a useful characterization of the category TopCH in terms of ultrafilters:

Theorem 3.6 (Characterization of compact and Hausdorff spaces via ultrafilter convergence). Let
X be a topological space. Then:

(1) X is compact if and only if every ultrafilter F on X converges to at least one point.
(2) X is Hausdorff if and only if every ultrafilter F on X converges to at most one point.

Hence the subcategory TopCH ⊂ Top of compact Hausdorff spaces is characterized by the property
that all ultrafilters there have a well-defined limit.

Proof. (1) Assume that X is compact and that there exists an ultrafilter F on X which does not
converge to any point. This means that for any x ∈ X, there exists a neighborhood Nx ̸∈ F .
These provide us with open neighborhoods x ∈ Ax ⊂ Nx that together cover X, and Ax ̸∈ F
by upward closure. By the compactness hypothesis, there exists a finite subcover

X = Ax1 ∪ · · · ∪ Axn
.

But X ∈ F , whence some Axi
∈ F by Proposition 2.1. This contradicts the fact that Axi

/∈ F .
Conversely, suppose that X is not compact. Then there is an open cover X =

∪
i∈I Ai with

no finite subcover. By the same argument as that in the proof of Theorem 3.3(1), there exists
an ultrafilter F containing all the sets Ac

i . Since F is an ultrafilter, this means that F does
not contain any of the neighborhoods Ai; in particular, F cannot converge to any x ∈ X,
since each belong to some Ai.

(2) Assume that X is Hausdorff but that there exists some ultrafilter F that converges to two
distinct points x, x′. Take disjoint open sets x ∈ A, x′ ∈ A′. Then A, A′ ∈ F but A ∩ A′ = ∅,
a contradiction.
Conversely, suppose that X is not Hausdorff. Then there are points x ̸= x′ such that every
neighborhood of x intersects every neighborhood of x′. This means that Nx ∪ Nx′ has the
FIP, and may thus be extended to an ultrafilter F . But F converges to both x and x′ by
construction.

Lemma 3.7. If a filter F on a topological space X converges to a point x ∈ X, then x ∈ A for
each A ∈ F .

8



Proof. If there is some A ⊂ X such that x /∈ A, then since A
c is open there exists some neighborhood

of x that does not meet A. Since F → x, this neighborhood belongs to F , so A cannot also belong
to F lest the FIP fail.

Lemma 3.8. If V is an open neighborhood of a point x inside a compact Hausdorff space, then
there exists a neighborhood N of x such that N ⊂ V .

Proof. V c is compact since it is a closed subspace of a compact space. For each y ∈ V c, take
disjoint open neighborhoods Ny and Uy of x and y respectively. As the Uy together cover the
compact subspace V c, there exists a finite subcover Uy1 ∪ · · · ∪ Uyn

⊃ V c. Let

C = U c
y1

∩ · · · ∩ U c
yn

= (Uy1 ∪ · · · ∪ Uyn)c ⊂ V ;

N = Ny1 ∩ · · · ∩ Nyn
.

Then N is a neighborhood of x and N ⊂ C ⊂ V . Moreover, C is closed, so N ⊂ C ⊂ V .

We finally have all the tools required to prove that the Stone–Čech construction is what we
claimed it to be:

Theorem 3.9. The functor β : Set → TopCH is left adjoint to the forgetful functor.

Proof. Remember that we have the prove the following assertion: given any function f : X → Y ,
where X is a set and Y is a compact Hausdorff topological space, there is a unique continuous map
f : βX → Y making the following diagram commute:

βX

X Y

∃!f

f

In this diagram, the vertical arrow is the embedding of X as a dense subspace of βX that maps
x to the principal ultrafilter ⟨x⟩ (Theorem 3.3). Define

f(F) = lim f∗F .

This definition makes sense by Theorem 3.6 since Y is compact and Hausdorff. Moreover, the
diagram commutes, as lim f∗⟨x⟩ = f(x).

We check that f is continuous. Let F ∈ βX be an ultrafilter, and let V ⊂ Y be an open
neighborhood of f(F) = lim f∗F . We must verify that some open neighborhood of F in βX
gets mapped inside V through f . Since Y is compact Hausdorff, we may apply Lemma 3.8 to
obtain a neighborhood N of f(F) such that N ⊂ V . By definition of the limit, N ∈ f∗F , i.e.,
U = f−1(N) ∈ F . By definition of the topology on βX, [U ] is an open neighborhood of F in βX.
For each filter F ′ ∈ [U ], we have U ∈ F ′ and so f(U) ∈ f∗F ′ by upward-closure (as f−1(f(U)) ⊃ U).
Hence by Lemma 3.7, f(F ′) ∈ f(U). Finally, since f(U) = f(f−1(N)) ⊂ N , we have f(U) ⊂ N
and thus f(F ′) ∈ N ⊂ V as desired.

Finally, f is unique, as two continuous functions that map into a Hausdorff space and agree on
a dense subspace must coincide.5

5Suppose that f, g agree on a dense subspace but f(x) ̸= g(x). Take disjoint open sets f(x) ∈ U and g(x) ∈ V ;
then f−1(U) ∩ g−1(V ) is open and also non-empty because it contains x, thus it intersects the dense subset; but
then U and V cannot possibly be disjoint.
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