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1 Introduction

Given two groups K and H, a semidirect product of K and H is a group G containing K and
H as subgroups, with K normal inside G, and with a unique factorization G = KH. As we will
see through many examples, semidirect products appear naturally in group theory and geometry.
Our preferred approach of introducing semidirect products as split extensions is slightly more ab-
stract than the standard, hands-on construction, but we believe that this method offers a clearer
perspective of the big picture.

In these notes we work almost exclusively in the category of groups. Unless stated otherwise,
every object is a group and every arrow is a group homomorphism. Depending on the context, the
symbol 1 denotes the trivial group or the identity in a given group (except in some rings like Z or
Z/n). The symbol 1G denotes the identity map on G.

2 Short exact sequences, group extensions

Definition. A short exact sequence of groups is a sequence of groups and group homomor-
phisms of the form

1→ K → G→ H → 1 (2.1)

which is exact. Exactness means that everywhere an arrow enters and leaves an object, the image
of the entering arrow is equal to the kernel of the exiting arrow. Explicitly, this says that K → G
is injective, G→ H is surjective, and im(K → G) = ker(G→ H).
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In practice, this allows one to identify K with its homomorphic image im(K → G) = ker(G→
H), which is a kernel and thus normal, and so by the first isomorphism theorem H ∼= G/K.

Any homomorphism f from a group G to some other group induces a short exact sequence

1→ ker(G→ im f)→ G→ im f → 1,

and of course every short exact sequence is of this form.

Example 1 (Two non-split extensions). There are short exact sequences

1→ Z 2−→ Z→ Z/2→ 1,

1→ Z/2 2−→ Z/4→ Z/2→ 1.

In both sequences, the monomorphism is multiplication by 2 and the epimorphism is reduction mod
2.

When one has a short exact sequence as in (2.1), we say that G is an extension of H by K.
In general, given two groups K and H, it is a very hard problem to classify all the extensions of H
by K.

3 Split extensions

The problem of classifying extensions of H by K becomes drastically simpler when we require H to
sit inside G as a subgroup in such a way that the epimorphism G→ H restricts to the identity on
H. In this case, we say that the extension is split, and then G is what we call a semidirect product
of K and H.

Definition. A homomorphism f : G → H is said to split if there exists a section or splitting
map s : H → G, that is, a homomorphism satisfying f ◦ s = 1H . Note that in this case f is
necessarily surjective and the section s is necessarily injective. If the epimorphism G→ H in (2.1)
splits then G is called a split extension of H by K, or a semidirect product of K and H.

The existence of a section s : H → G is in fact a very strong property with many important
consequences. First of all, we can (and will) identify H with the (not necessarily normal) subgroup
s(H) ⊂ G. Given an extension as in (2.1), we may identify G/K with H, so the section lets us
treat G/K as a subgroup of G. (See Figure 1.) Regarding s as a section s : G/K → G that
splits the quotient map, we see that s is a choice of a representative for each coset in G/K. (One
could be led to think that there is nothing special about the existence of a such a "choice function";
after all, any surjective map admits right inverses. The crucial point here is that s has to be a
homomorphism.) An important consequence of this setup is that K and H, viewed as subgroups
of G, intersect trivially: any k ∈ K is mapped to the identity element in G/K ∼= H. Moreover,
we have a decomposition G = KH: given any g ∈ G, there exists a unique h ∈ H such that
Kg = Kh, so that gh−1 ∈ K; hence there exists a unique k ∈ K such that g = kh. (Uniqueness
of the decomposition also follows from the fact that K ∩H = {1}.) Hence we have a set-theoretic
bijection between G and K ×H.

Conversely, if G is a group with a normal subgroup K / G and another subgroup H < G such
G factors uniquely as G = KH, then it is clear that G is a semidirect product of K and H.
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Figure 1: G as a semidirect product of K and H. The vertical bars represent the cosets in G/K,
which partition G.

Another important feature of split extensions is that they induce actions of H on K which,
as we will see later, let us turn the problem around and reconstruct G from K and H uniquely.
This completely solves the classification problem for split extensions. First, note that a group
action of H on K is the same thing as a homomorphism φ : H → AutK. Now, given a split
extension, we let H act on K by conjugation. This means that φ(h) := φh ∈ AutK is defined by
φh(k) = hkh−1. (Again, it is very important to remember that this is only possible because of the
existence of a splitting map, which lets us identify H with a subgroup of G. Also note that it may
very well happen that different splitting maps induce different actions.) This is well-defined since
K is normal in G, and so the image of φh cannot leave K.

Here is another way to think about this. Recall that an inner automorphism of K is an automor-
phism of the form φk(k′) = kk′k−1 for some k ∈ K. Inner automorphisms form a normal subgroup
InnK /AutK, and the quotient OutK = AutK/ InnK is called the group of outer automorphisms
of K. Given that G is a (not necessarily split) extension of H by K, the normality of K implies
that there always exists a conjugacy homomorphism G→ AutK. Since this homomorphism maps
K inside InnK, it descends to a well-defined homomorphism

ψ : H ∼= G/K → AutK/ InnK = OutK.

We can think of the splitting map s : H → G as an object that lets us lift ψ : H → OutK to
φ : H → AutK, as in the following diagram:
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If π : AutK → OutK denotes the quotient map, and if h ∈ H, identified with s(h) ∈ G,
belongs to the coset gK, then we have g−1h ∈ K, which implies that φ−1

g φh = φg−1h ∈ InnK, or
φg InnK = φh InnK. But the left-hand side is precisely ψ(h), and the right-hand side is precisely
(π ◦ φ)(h). Hence φ lifts ψ.

To sum things up, we should think of a semidirect product of K and H as made up of two
components: a normal subgroup K, and a subgroup H ∼= G/K that lies transverse to the cosets
in G/K and meets each exactly once. The homomorphism H → AutK gives us information about
how H lies inside G. As we will see shortly, if this homomorphism is trivial then G is just a direct
product of K and H.

This is all rather abstract, so let’s look at some concrete examples. First of all, note that
neither of the extensions in Example 1 split. For the first sequence, a splitting map would have to
be an injective homomorphism from Z/2 to Z, but no such homomorphism exists. For the second
sequence, we’d need a homomorphism s : Z/2 → Z/4 such that s(1) is odd and has order 2, but
again no such homomorphism exists since every odd element has order 4 in Z/4.

Now let’s see examples of extensions that do split.

Example 2 (Direct product). The most trivial split extension is given by the direct product. Let
K,H be any two groups and let G = K ×H. The extension

1→ K → K ×H → H → 1

clearly admits the section s : H → K × H given by s(h) = (1, h). Moreover, the homomorphism
φ : H → AutK is trivial since

φh(k, 1) = (1, h)(k, 1)(1, h)−1 = (k, hh−1) = (k, 1).

Note that in this example H is actually normal in G; in fact, this is the only time this can
happen: G is a split extension of H by K with H C G if and only if G is isomorphic to K ×H.

Indeed, first note that the normality of K and H and the condition K∩H = {1} together imply
that every element of K commutes with every element of H: for any k ∈ K, h ∈ H, the commutator
[k, h] = khk−1h−1 belongs to K ∩ H = {1}. This in turn implies that we have a homomorphism
ξ : K ×H → G defined by ξ(k, h) = kh, since

ξ((k, h)(k′, h′)) = ξ(kk′, hh′) = kk′hh′ = khk′h′ = ξ(k, h)ξ(k′, h′).

It is bijective because, as we noted at the beginning of the §, every element of the semidirect product
G can be written uniquely as kh with k ∈ K and h ∈ H.

Example 3 (Dihedral group). The dihedral group G = Dn is the group of symmetries of a regular
n-sided polygon. (The degenerate cases n = 1, 2 have to be handled somewhat carefully; it is
natural to define D1 = Z/2 and D2 = Z/2 × Z/2.) It has order 2n and consists of n rotations
and n reflections. One only needs two elements to generate Dn, namely a rotation ρ of 2π/n
and a reflection b with respect to a bisector of some vertex. These generators satisfy the relation
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Figure 2: A rotation ρ of 2π/3 and a reflection b through the line bisecting the top vertex, two
generators of D3, do not commute.

bρb = ρ−1. Note that ρ and b do not commute as soon as n ≥ 3, c.f. Figure 2. Interestingly, the
dihedral group is also generated by the two reflections a = ρb and b; in fact, it is not hard to show
that any finite (resp. infinite) nonabelian group with two generators of order 2 is isomorphic to
some Dn (resp. to the infinite dihedral group, defined in the next example). One way to see this is
to invoke the uniqueness of semidirect products, proved in Theorem 4.1.

Take K = Z/n and H = Z/2. We have a split short exact sequence

1→ Z/n→ Dn → Z/2→ 1,

where the generator 1 ∈ Z/n is mapped to the rotation ρ ∈ Dn, and the epimorphism Dn → Z/2
is essentially just the determinant map, sending a symmetry in Dn to the generator of Z/2 if and
only if the symmetry is orientation-reversing. To split this sequence, we can simply take the section
s : Z/2→ Dn that maps the generator to the reflection b ∈ Dn.

The homomorphism φ : Z/2→ AutZ/n is given by the inversion φ1(k) = n− k, since inside Dn

we have
φ1(ρ) = bρb = ρ−1.

Example 4 (Infinite dihedral group). Let G = (Z/2)〈a〉 ∗ (Z/2)〈b〉 be the free product of two
copies of Z/2, with generators a and b respectively. This means that G consists of reduced words
on the alphabet {a, b} subject to the relations a2 = b2 = 1 (empty word). The group G is known
as the infinite dihedral group. Since two adjacent generators of the same kind cancel each other
out, sample elements of G look like a, ba, aba, abab... you get the picture. Note that any word of
odd length has order 2 in G since it starts and ends with the same letter; for example, (aba)2 =
abaaba = abba = aa = 1.

Now, let K = Z and H = Z/2. Define a monomorphism Z → G by sending the positive
generator to the word ab. So, for example, 2 is identified with abab and −1 is identified with
(ab)−1 = ba. Next define an epimorphism G → Z/2 by counting the length of the reduced words
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mod 2. Since the image of the injection Z→ G consists exactly of words of even length, we have a
short exact sequence

1→ Z→ (Z/2)〈a〉 ∗ (Z/2)〈b〉 → Z/2→ 1.

We claim that this extension of Z/2 by Z, as opposed to the one in Example 1, is split. Indeed,
we can choose s : Z/2 → G to map the generator to any word of odd length, say a. This is a
homomorphism since, as noted earlier, any reduced word of odd length has order 2 in G.

What is the homomorphism φ : Z/2→ AutZ in this case? It suffices to compute

φ1(ab) = a(ab)a−1 = ba,

and so we see that φ is the only nontrivial homomorphism from Z/2 to AutZ ∼= Z/2.

Example 5 (Symmetric group). Like the dihedral groups above, many groups are split extensions
of Z/2, since in this case normality of the complementary subgroup comes for free. The symmetric
group Sn is no exception: as the reader can readily check, the sign homomorphism Sn → Z/2 splits,
so that Sn is a semidirect product of the alternating group An and Z/2.

Example 6 (Matrix groups). Let F be a field. The determinant homomorphism on GL(n,F) and
some of its subgroups yields examples of split extensions. For example, we have split short exact
sequences

1→ SL(n,F)→ GL(n,F) det−−→ F× → 1,

1→ SO(n,F)→ O(n,F) det−−→ Z/2→ 1,

1→ SU(n)→ U(n) det−−→ U(1)→ 1.

To split the determinant map in these sequences, one simply has to consider elements of F×, Z/2
and U(1) as 1× 1 matrices, embedded inside n× n matrices by padding the diagonal with 1’s.

We will look at many more examples in §5.

4 Semidirect products: existence and uniqueness

Now let us reverse the process above. Given two groups K and H, how can we construct all the
split extensions of H by K? For this we will need the extra piece of information afforded by the
homomorphisms from H to AutK.

Definition. Let 1 → K → G → H → 1 be a short exact sequence and let θ : H → AutK be a
homomorphism. We say that G is a semidirect product of K and H realizing θ if there exists a
splitting map s : H → G such that the action by conjugation φ : H → AutK with respect to s
coincides with θ.

Theorem 4.1 (Existence and uniqueness of semidirect products). Given any groups K and H and
any homomorphism θ : H → AutK, there exists a semidirect product of K and H realizing θ. It is
denoted by K oθ H. Moreover any semidirect product G of K and H realizing θ is isomorphic to
K oθ H.
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Proof. As a set underling K oθ H, we take the direct product K × H. The group operation on
K oθ H is given as follows:

(k, h)(k′, h′) := (kθh(k′), hh′).

One easily checks that this makes K oθ H into a group, with (1, 1) as the identity and with the
inversion formula

(k, h)−1 = (θh−1(k−1), h−1).

This group K oθ H is a semidirect product of K and H for we have the following split short
exact sequence:

1→ K → K oθ H → H → 1,

where K → K oθ H maps k to (k, 1) and K oθ H → H maps (k, h) to h. The sequence is split by
s : H → K oθ H which maps h to (1, h). The conjugation homomorphism induced by s is given by

φh(k, 1) = (1, h)(k, 1)(1, h)−1 = (θh(k), h)(1, h−1) = (θh(k), 1),

so that as a map φ : H → AutK, φ coincides with θ; hence K oθ H realizes θ.
For the uniqueness part, let G be any semidirect product of K and H realizing θ. By definition,

there exists a section H → G such that, after identification of H as a subgroup of G, the action
of θ corresponds to the conjugation action φ : H → AutK. Let ξ : K oθ H → G be given by
ξ(k, h) = kh. Then ξ is a homomorphism since

ξ((k, h)(k′, h′)) = ξ(kθh(k′), hh′) = kφh(k′)hh′ = k(hk′h−1)hh′ = khk′h′ = ξ(k, h)ξ(k′, h′).

Moreover ξ is a bijection because, as we noted in the paragraph following the definition of a
semidirect product in §3, every element of G can be written uniquely as kh with k ∈ K and
h ∈ H.

We can now restate the discussion about direct products in Example 2 in more elegant terms.

Corollary 4.2 (Characterization of direct products). Let

1→ K
m−→ G

f−→ H → 1

be a short exact sequence of groups. Then the following are equivalent:

(1) G ∼= K ×H;
(2) The sequence splits and H is normal in G with respect to the splitting;
(3) G is a semidirect product of K and H realizing the trivial homomorphism H → AutK;
(4) There exists a retraction r : G→ K, that is, a homomorphism such that r ◦m = 1K .

Proof. The equivalence of (1) and (2) was discussed in Example 2. The equivalence of (1) and (3)
is a direct consequence of the uniqueness part of Theorem 4.1. The implication (1) =⇒ (4) is
obvious; all that remains to be proved is the implication (4) =⇒ (1).

Let r : G→ K be a retraction. We have a homomorphism ξ : G→ K ×H that maps g ∈ G to
ξ(g) = (r(g), f(g)). We claim that ξ is an isomorphism.

To see that ξ is injective, let g ∈ ker ξ. This means that r(g) = f(g) = 1. By exactness,
f(g) = 1 implies that there exists k ∈ K such that g = m(k). Since r is a retraction, we get
k = r(m(k)) = r(g) = 1, hence g = m(1) = 1.
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To see that ξ is surjective, let (k, h) by any element in K ×H. Let g ∈ G be any preimage of h
by f (which is surjective). Then the element m(kr(g)−1)g ∈ G is a preimage of (k, h) by ξ:

ξ(m(kr(g)−1)g) = (r(m(kr(g)−1)g), f(m(kr(g)−1)g))
= (kr(g)−1r(g), f(g)) since r ◦m = 1K and f ◦m = 1
= (k, h).

Note however that, despite (3), it is possible for a direct product to realize nontrivial homomor-
phisms! For example, let G be any nonabelian group and let g ∈ G \ Z(G). Then the short exact
sequence

1→ G→ G× Z→ Z→ 1

splits by mapping the positive generator 1 ∈ Z to (g, 1), and the corresponding homomorphism
φ : Z→ AutG is given by

φ1(g′, 1) = (g, 1)(g′, 1)(g, 1)−1 = (gg′g−1, 1),

i.e., it is conjugation by g. Since g does not belong to the center of G, this action is nontrivial.
Note also that, as a consequence of Corollary 4.2, for short exact sequences of abelian groups,

the only semidirect product is the direct product, and the existence of a section is equivalent to the
existence of a retraction.

Example 7 (Vector spaces). Consider any short exact sequence of vector spaces (or free modules),
written additively:

0→ U
m−→ V

f−→W → 0.

We claim that any such sequence splits, so that V ∼= U ⊕W . (For finite-dimensional vector spaces,
this yields the rank-nullity theorem.) This is a consequence of the fact that any vector space admits
a basis, and that linear maps are determined by their action on a basis. To construct a retraction
r : V → U , one can extend a basis of U to all of V , then define r by mapping the basis of U to itself
and the new basis vectors to 0. Alternatively, one can construct a section s : W → V by choosing
a basis of W and letting s pick a preimage for each basis vector.

5 More examples

Example 8. Let K = Z and H = Z/2. Since there are only two homomorphisms Z/2→ AutZ ∼=
Z/2, there are at most two distinct semidirect products of K and H up to isomorphism. In fact,
both homomorphisms yield distinct groups: the trivial homomorphism yields Z × Z/2, and the
nontrivial homomorphism yields the infinite dihedral group Z/2 ∗ Z/2, as we saw in Example 4.

Example 9 (Fundamental group of the torus and Klein bottle). Let K = H = Z. Again there
are precisely two homomorphisms Z→ AutZ ∼= Z/2. The trivial one yields the direct product Z2.
What about the nontrivial one? Let θ : Z → AutZ be given by θ1(x) = −x. The construction in
Theorem 4.1 gives us a group Z oθ Z whose underlying set is Z2 and whose operation is given by

(a, b)(c, d) = (a+ (−1)bc, b+ d).
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Note that the elements x = (1, 0) and y = (1, 1) satisfy the relation xyx = y in Zoθ Z. Inspired by
this, let G be the group with presentation

G = 〈x, y | xyx = y〉.

Consider the following short exact sequence:

1→ Z→ G
f−→ Z→ 1,

where the monomorphism maps 1 ∈ Z to x ∈ G and the epimorphism f is defined by f(x) = 0,
f(y) = 1. Note that f , a priori only defined on the free group generated by x and y, descends
to a well-defined homomorphism on G since f(xyx) = 1 = f(y). Exactness amount to showing
that ker f consists exactly of the reduced words that can be written without the letters y, y−1. Let
g ∈ G be any word such that f(g) = 0. This means that y appears exactly as many times as y−1

in g. If y appears at all then a little thought shows that at least one of the following four strings
must appear in g:

yxy−1 yx−1y−1 y−1xy y−1x−1y.

But these are, respectively, x−1, x, x−1 and x. Continuing this process, we can eventually eliminate
all the letters y and y−1 in g.

Also note that f splits by s : Z → G, s(1) = y, and that the induced homomorphism φ : Z →
AutZ coincides with θ:

φ1(x) = yxy−1 = x−1.

Hence G is a semidirect product of Z and Z realizing θ; by Theorem 4.1, it must be isomorphic to
Z oθ Z.

From the above we can conclude that the trivial semidirect product of Z with itself admits the
presentation 〈x, y | xy = yx〉, while the nontrivial semidirect product of Z with itself admits the
presentation 〈x, y | xyx = y〉. It is interesting to note that both of these groups come up naturally in
topology: they are the fundamental groups of the two closed surfaces that admit nowhere-vanishing
vector fields, namely the torus (which is orientable) and the Klein bottle (which is not).

To get an idea of why the fundamental group of the Klein bottle admits that presentation,
consider the following two affine homeomorphisms of R2:

g(x, y) = (x+ 1, y) and h(x, y) = (−x, y + 1).

Note that

(g ◦ h ◦ g)(x, y) = (g ◦ h)(x+ 1, y) = g(−x− 1, y + 1) = (−x, y + 1) = h(x, y),

that is to say g ◦ h ◦ g = h; in fact the group generated by g and h is isomorphic to G above,
by interchanging instances of g and h by instances of x and y. That group acts on R2 by home-
omorphisms, and the orbit space R2/G is seen to be homeomorphic to the Klein bottle. (The
fundamental polygon is the square [− 1

2 ,
1
2 ] × [0, 1].) In fact this exhibits R2 as the universal cover

of the bottle, and G as its group of deck transformations; a fundamental theorem of covering space
theory then asserts that the fundamental group of the bottle is isomorphic to G.

Example 10 (Affine group). The affine group A(n,R) of Rn is the group of all affine transforma-
tions x 7→ Ax+ b, where A ∈ GL(n,R) and b ∈ Rn. We have the split short exact sequence

1→ Rn → A(n,R)→ GL(n,R)→ 1,
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where the monomorphism maps b ∈ Rn to (x 7→ x + b) ∈ A(n,R) and the epimorphism maps
(x 7→ Ax + b) ∈ A(n,R) to A ∈ GL(n,R). There is an obvious section sending A ∈ GL(n,R)
to (x 7→ Ax) ∈ A(n,R). The induced action φ : GL(n,R) → AutRn is given by matrix-vector
multiplication:

φA(x 7→ x+ b) = (x 7→ Ax)(x 7→ x+ b)(x 7→ A−1x) = (x 7→ Ax)(x 7→ A−1x+ b) = x 7→ x+Ab.

Hence A(n,R) ∼= Rn oφ GL(n,R).

Example 11 (Infinite dihedral group as affine group). We can recover the infinite dihedral group
Z o Z/2 ∼= Z ∗ Z of Example 4 as a special case of the example above. Indeed, the group A(1,Z)
consists of the affine transformations of the form x 7→ ax+b, where a ∈ {±1} ∼= Z/2 and b ∈ Z. The
same short exact sequence as in the example above shows that A(1,Z) is a semidirect product of
Z and Z/2 realizing the nontrivial homomorphism Z/2→ AutZ, so the result follows by Theorem
4.1.

Alternatively, one can use the fact that the infinite dihedral group is the unique infinite non-
abelian group that is generated by two elements of order 2, and note that A(1,Z) is generated by
the two involutions x 7→ −x and x 7→ −x+ 1.

Example 12 (Hyperoctahedral group). The group O(n,Z) of orthogonal matrices with integer
coefficients is the group of signed permutation matrices: matrices with a single nonzero entry per
line and per column, and such that the nonzero entries are either 1 or −1. The reader can check
that the determinant homomorphism O(n,Z)→ Z/2 and the "forget all the signs" homomorphism
O(n,Z)→ Sn yield two semidirect product decompositions

O(n,Z) ∼= SO(n,Z) o Z/2 and O(n,Z) ∼= (Z/2)n o Sn.

Are there other interesting decompositions of O(n,Z)?
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