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Euclid’s Theorem

Euclid, circa 300 BC:

Theorem

There are infinitely many prime numbers.

Proof.

Suppose that p1 = 2 < p2 = 3 < . . . < pr are all of the primes.
Let P = p1p2 · · · pr + 1 and let p be a prime dividing P; then p
can not be any of the pi , otherwise p would divide the difference
P − p1p2 · · · pr = 1, which is impossible. So this prime p is still
another prime.
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What Is Topology?

Topology formalizes notions of

Nearness

Continuity

by specifying that certain sets be ”open” and ”closed”.

...but Euclid’s theorem is a statement about prime numbers.

Integers appear as discrete rather than continuous.

So what does topology have to do with our statement?
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What Does Topology Have to Do With Our Statement?

There are many ways of ”topologizing” the integers.
However, consider the following subsets: for a, b ∈ Z, b 6= 0,

N(a, b) = a + bZ = {a + bk | k ∈ Z}

These are the arithmetical sequences.

These subsets of Z possess interesting properties.

They will be used as building blocks for our topology.

Under this topology, Z will be ”forced” into having infinitely
many prime numbers.
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Basic Concepts: Topological Spaces

Definition

Let X be a set. A collection T of subsets of X is called a topology
on X if it satisfies the following axioms:

(i) ∅,X ∈ T
(ii) {Ui}i∈I ⊆ T =⇒

⋃
i∈I Ui ∈ T

(iii) U1, . . . ,Un ∈ T =⇒
⋂n

i=1 Ui ∈ T

Definition

If T is a topology on X , (X , T ) is called a topological space, X is
the set of points, and the elements of T are the open sets.
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Basic Concepts: Neighborhoods, Closed Sets

Definition

A neighborhood of x ∈ X is an open set containing x (some
authors use the term ”open neighborhood”).

Definition

A set U ⊆ X is closed if its complement X \ U is open.

Remark

Closed sets possess properties ”dual” to those of open sets:

Finite unions of closed sets are closed.

Arbitrary intersections of closed sets are closed.
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Examples of Topological Spaces

Some examples of topological spaces:

Any set X with topology T = {∅,X} (the trivial topology)

Any set X with topology T = P(X ) (the discrete topology)

The set R with its familiar open and closed sets

Any metric space with the topology induced by its metric

The set {a, b, c} can be given 29 different topologies!
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Basic Concepts: Basis

Definition

A basis for a topology on X is a collection B of subsets of X
satisfying:

(i) For all x ∈ X , there exists at least one basis element B ∈ B
containing x .

(ii) If x belongs to the intersection of two basis elements
B1,B2 ∈ B, then there exists a basis element B3 ∈ B
containing x such that B3 ⊆ B1 ∩ B2.

Example

The collection of open sets of the form (a, b) forms a basis for a
topology on R.
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Basic Concepts: Topology Generated by a Basis

Definition

Given a basis B for a topology on X , the topology T generated by
B is described as follows:
U ⊆ X is open iff for each x ∈ U, there exists a basis element
B ∈ B such that B contains x and B ⊆ U.

There is a simple characterization of open sets using basis
elements:

Proposition

If B is a basis for a topology T on X , then every open set in T is a
union of elements of B.
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Topologizing the Integers

Recall the arithmetic sequences in Z that we defined earlier on:

N(a, b) = a + bZ = {a + bk | k ∈ Z} (b 6= 0)

Take the collection B of all these subsets:

B = {N(a, b) | a, b ∈ Z, b 6= 0}

Let’s check that this is, in fact, a basis for a topology on Z.
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Checking That We Have a Basis

We need to verify two things:

(i) That B covers Z. But N(0, 1) = Z is a basis element that
covers Z, so we are done.

(ii) That given basis elements N(a1, b1) and N(a2, b2), and x in
their intersection, there exists a basis element B ∈ B such
that x ∈ B ⊆ N(a1, b1) ∩ N(a2, b2).

But taking b = lcm(b1, b2), one has that
B = N(x , b) = N(a1, b1) ∩ N(a2, b2) and this is sufficient.

Alex Provost

A Topological Proof of the Infinitude of Primes



Outline Introduction Review of Elementary Topology Proving Euclid’s Theorem

0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

N(1, 2)

0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

N(0, 3)

0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

N(1, 2) ∩ N(0, 3) = N(3, lcm(2, 3)) = N(3, 6)
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Remarks on Our Newfound Topology (Pt. 1)

Thus B = {N(a, b) | a, b ∈ Z, b 6= 0} generates a unique
topology on Z.

Each N(a, b) is a neighborhood of a, hence the notation.

A subset of the integers is open iff it is a (possibly empty)
union of arithmetic sequences.

Example

The set N(0, 3) ∪ N(2, 4) =
{. . . ,−9,−6,−3, 0, 3, 6, 9, . . .} ∪ {. . . ,−10,−6,−2, 2, 6, 10, . . .} =
{. . . ,−10,−9,−6,−3,−2, 0, 2, 3, 6, 9, 10, . . .} is open in Z.
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Remarks on Our Newfound Topology (Pt. 2)

Any non-empty open set is infinite.

Equivalently, the complement of a finite set cannot be closed.

The basis sets N(a, b) are closed as well as open. Indeed, we
can write them as complements of open sets:

N(a, b) = Z \
|b|−1⋃
i=1

N(a + i , b)

Example

N(0, 3) = {. . . ,−6,−3, 0, 3, 6, . . .} =
Z \ ({. . . ,−5,−2, 1, 4, 7, . . .} ∪ {. . . ,−4,−1, 2, 5, 8, . . .}) =

Z \
⋃|3|−1

i=1 N(0 + i , 3).
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0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

Z \ N(0, 3)

0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

N(1, 3)

0 1 2 3 4 5 6 7 8 9 10 · · ·· · ·

N(2, 3)
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The Theorem

We can now easily prove Euclid’s Theorem!

Theorem

There are infinitely many prime numbers.
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The Proof

Proof.

Assume by way of contradiction that there are finitely many primes.
The only integers that aren’t multiples of prime numbers are 1 and
-1, so

Z \ {−1,+1} =
⋃

p prime

pZ =
⋃

p prime

N(0, p)

The left-hand side, as a complement of a finite set, cannot be
closed.

However the right-hand side is a finite union of closed sets,
which is closed.

Therefore there must be an infinitude of primes.
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