Useful Facts From Finite Group Theory

Alex Provost

May 28, 2015

Abstract

Any group is tacitly assumed to be finite unless otherwise stated.

1 Orbit-stabilizer, class equation

Any group G acts on itself by conjugation: $g \cdot h=g^{-1} h g$. The orbits $\mathcal{O}(h)=$ $\left\{g^{-1} h g: g \in G\right\}$ are the conjugacy classes, and the stabilizers $G_{h}=\{g \in G$: $g h=h g\}=C_{G}(h)$ are exactly the centralizers. (Note that for singleton sets, centralizers and normalizers coincide, and so $G_{h}=C_{G}(h)=N_{G}(h)$.) Now, note the following two general things (unrelated to our particular choice of action):
Remark 1. Being in the same orbit is an equivalence relation, so the orbits partition G. Thus in particular $|G|=\sum_{i=1}^{s}\left|\mathcal{O}\left(h_{i}\right)\right|$ for some choice of representative h_{1}, \ldots, h_{s} of each orbit.
Remark 2. There is a natural bijection $\mathcal{O}(h) \cong G / G_{h}$ for any $h \in G$: the correspondence is given by $g \cdot h \leftrightarrow g G_{h}$. (Note that G_{h} need not be normal in G and so G / G_{h} might not be a group.)

Denote the center of G by $Z(G)=\{h \in G: \forall g \in G, g h=h g\}$.
Proposition 1.1. We have $h \in Z(G)$ if and only if $|\mathcal{O}(h)|=1$ (for our particular choice of action, namely action by conjugation).

Proof. Indeed $h \in Z(G) \Longleftrightarrow g h=h g$ for all $g \in G \Longleftrightarrow \mathcal{O}(h)=\left\{g^{-1} h g\right.$: $g \in G\}=\{h\}$.

Thus the elements which belong to the center of G correspond exactly to the singleton conjugacy classes of G (the singleton orbits).

Now the class equation is just a restatement of the remarks above together with Proposition 1.1:

Proposition 1.2 (Class equation). Let h_{1}, \ldots, h_{s} be representatives of the non-singleton conjugacy classes of G. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{s}\left[G: C_{G}\left(h_{i}\right)\right] .
$$

Remark 3 (Counting orbits). A similar argument can be used to compute the number of orbits of an arbitrary action of a group G on a set X. In this case, let $x_{1}, \ldots, x_{s} \in X$ be a complete set of representatives for the orbits. (Hence we which to determine the number s.) For $g \in G$, write $X^{g}=\{x \in X: g \cdot x=x\}$ for the set of points fixed by g, and note the symmetry relation

$$
\sum_{g \in G}\left|X^{g}\right|=|\{(g, x) \in G \times X: g \cdot x=x\}|=\sum_{x \in X}\left|G_{x}\right|
$$

But each $\left|G_{x}\right|$ is just $|G| /|\mathcal{O}(x)|$, and so the above sum is just

$$
|G| \sum_{x \in X} 1 /|\mathcal{O}(x)|=|G| \sum_{i=1}^{s}\left|\mathcal{O}\left(x_{i}\right)\right| /\left|\mathcal{O}\left(x_{i}\right)\right|=|G| s
$$

Hence the number of orbits is exactly the "average number of points fixed by $G, "$

$$
s=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

2 Applications of the class equation

The class equation has the following immediate application, which is frequently useful. Recall that a p-group is a group of order p^{n}, where p is prime.

Proposition 2.1. Any p-group G has nontrivial center.
Proof. Since each index $\left[G: C_{G}\left(h_{i}\right)\right]$ appearing in the class equation is ≥ 2 and divides $|G|=p^{n}$, then necessarily p divides $\left[G: C_{G}\left(h_{i}\right)\right]$. Since p also divides $|G|$, it follows that p divides the sum $|G|-\sum_{i=1}^{s}\left[G: C_{G}\left(h_{i}\right)\right]=|Z(G)|$.

Proposition 2.2. If $G / Z(G)$ is cyclic, then G is abelian (thus a fortiori $G / Z(G)$ is trivial).

Proof. Let $h Z(G)$ be a generator for the cyclic group $G / Z(G)$. Let $g_{1}, g_{2} \in G$ be arbitrary elements. Since the cosets $h^{i} Z(G)$ partition G, we can write $g_{1}=h^{k} z_{1}$ and $g_{2}=h^{l} z_{2}$ for some $k, l \in \mathbb{N}$ and some $z_{1}, z_{2} \in Z(G)$. Then

$$
g_{1} g_{2}=h^{k} z_{1} h^{l} z_{2}=z_{1} h^{k+l} z_{2}=z_{2} h^{l+k} z_{1}=h^{l} z_{2} h^{k} z_{1}=g_{2} g_{1}
$$

since z_{1} and z_{2} commute with everything. Hence G is abelian.
These two results give us the following
Proposition 2.3. A group G of order p^{2} for some prime p is necessarily abelian.

Proof. We must show that $Z(G)=G$. By Lagrange's theorem, the only possibilities for $|Z(G)|$ are $1, p, p^{2}$. By Proposition $2.1,|Z(G)| \neq 1$ since G is a p-group. If $|Z(G)|=p$, then $|G / Z(G)|=p$. This implies that $G / Z(G)$ is cyclic; thus G is abelian by Proposition 2.2.

3 Sylow's theorem

Sylow's theorem lets us extract information about the structure of p-subgroups inside a group G given only the data $|G|$.

Theorem 3.1 (Sylow). Let G be a group of order $p^{k} m$, where p doesn't divide m. A subgroup of order p^{k} in G is then called a Sylow p-subgroup. The following statements hold:
(1) Sylow p-subgroups exist;
(2) Any two Sylow p-subgroups are conjugate in G (hence isomorphic);
(3) The number of Sylow p-subgroups $n_{p} \equiv 1 \bmod p$. Moreover $n_{p}=[G$: $N_{G}(P)$] for any Sylow p-subgroup P; hence, by Euclid's lemma, n_{p} divides m.

Corollary 3.2. A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup in G, i.e., $n_{p}=1$.

Let us look at some examples. First, recall the following:
Proposition 3.3. A subgroup H of index 2 in G is normal.
Proof. The left and right cosets partition G, so $G=H \sqcup g H=H \sqcup H g$ for any $g \notin H$. This implies that $g H=H g$ for all $g \in G$ as desired.

Proposition 3.4. Any group G of order 30 has a normal subgroup of order 15.

Proof. By the above proposition, any subgroup of order 15 is automatically normal. Thus it suffices to show that such a subgroup exists. Now $30=2 \cdot 3 \cdot 5$; in particular, by Sylow's theorem (or the weaker theorem of Cauchy), subgroups of order 3 and 5 exist. If either of them if normal in G, then their product is a subgroup of order 15 and we are done.

So suppose that $n_{3}>1$ and $n_{5}>1$ (cf. Corollary 3.2). By the divisibility relation in Sylow's theorem, n_{3} must divide 10 and n_{5} must divide 6. Also, we must have $n_{3} \equiv 1 \bmod 3$ and $n_{5} \equiv 1 \bmod 5$. Thus the only possibility is $n_{3}=10$ and $n_{5}=6$. By Lagrange's theorem, distinct Sylow 5 -subgroups must intersect in the identity (since the intersection of subgroups is a subgroup and 5 is prime). Hence the 6 Sylow 5 -subgroups yield 4 distinct non-identity elements each for a total of 24 elements of order 5 . Similarly, the 10 Sylow 3-subgroups provide in total $10 \cdot 2=20$ elements of order 3 , a contradiction since G only has order 30.

