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Any group is tacitly assumed to be finite unless otherwise stated.

1 Orbit-stabilizer, class equation

Any group G acts on itself by conjugation: g · h = g−1hg. The orbits O(h) =
{g−1hg : g ∈ G} are the conjugacy classes, and the stabilizers Gh = {g ∈ G :
gh = hg} = CG(h) are exactly the centralizers. (Note that for singleton sets,
centralizers and normalizers coincide, and so Gh = CG(h) = NG(h).) Now,
note the following two general things (unrelated to our particular choice of
action):
Remark 1. Being in the same orbit is an equivalence relation, so the orbits
partition G. Thus in particular |G| =

∑s
i=1|O(hi)| for some choice of represen-

tative h1, . . . , hs of each orbit.
Remark 2. There is a natural bijection O(h) ∼= G/Gh for any h ∈ G : the
correspondence is given by g · h↔ gGh. (Note that Gh need not be normal in
G and so G/Gh might not be a group.)

Denote the center of G by Z(G) = {h ∈ G : ∀g ∈ G, gh = hg}.

Proposition 1.1. We have h ∈ Z(G) if and only if |O(h)| = 1 (for our
particular choice of action, namely action by conjugation).

Proof. Indeed h ∈ Z(G) ⇐⇒ gh = hg for all g ∈ G ⇐⇒ O(h) = {g−1hg :
g ∈ G} = {h}.

Thus the elements which belong to the center of G correspond exactly to
the singleton conjugacy classes of G (the singleton orbits).

Now the class equation is just a restatement of the remarks above together
with Proposition 1.1:

Proposition 1.2 (Class equation). Let h1, . . . , hs be representatives of the
non-singleton conjugacy classes of G. Then

|G| = |Z(G)|+
s∑

i=1
[G : CG(hi)].
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Remark 3 (Counting orbits). A similar argument can be used to compute the
number of orbits of an arbitrary action of a group G on a set X. In this case, let
x1, . . . , xs ∈ X be a complete set of representatives for the orbits. (Hence we
which to determine the number s.) For g ∈ G, write Xg = {x ∈ X : g · x = x}
for the set of points fixed by g, and note the symmetry relation∑

g∈G

|Xg| = |{(g, x) ∈ G×X : g · x = x}| =
∑
x∈X

|Gx|.

But each |Gx| is just |G|/|O(x)|, and so the above sum is just

|G|
∑
x∈X

1/|O(x)| = |G|
s∑

i=1
|O(xi)|/|O(xi)| = |G|s.

Hence the number of orbits is exactly the "average number of points fixed by
G,"

s = 1
|G|

∑
g∈G

|Xg|.

2 Applications of the class equation

The class equation has the following immediate application, which is frequently
useful. Recall that a p-group is a group of order pn, where p is prime.

Proposition 2.1. Any p-group G has nontrivial center.

Proof. Since each index [G : CG(hi)] appearing in the class equation is ≥ 2 and
divides |G| = pn, then necessarily p divides [G : CG(hi)]. Since p also divides
|G|, it follows that p divides the sum |G| −

∑s
i=1[G : CG(hi)] = |Z(G)|.

Proposition 2.2. If G/Z(G) is cyclic, then G is abelian (thus a fortiori
G/Z(G) is trivial).

Proof. Let hZ(G) be a generator for the cyclic group G/Z(G). Let g1, g2 ∈ G
be arbitrary elements. Since the cosets hiZ(G) partition G, we can write
g1 = hkz1 and g2 = hlz2 for some k, l ∈ N and some z1, z2 ∈ Z(G). Then

g1g2 = hkz1hlz2 = z1hk+lz2 = z2hl+kz1 = hlz2hkz1 = g2g1

since z1 and z2 commute with everything. Hence G is abelian.

These two results give us the following

Proposition 2.3. A group G of order p2 for some prime p is necessarily
abelian.

Proof. We must show that Z(G) = G. By Lagrange’s theorem, the only pos-
sibilities for |Z(G)| are 1, p, p2. By Proposition 2.1, |Z(G)| 6= 1 since G is a
p-group. If |Z(G)| = p, then |G/Z(G)| = p. This implies that G/Z(G) is
cyclic; thus G is abelian by Proposition 2.2.
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3 Sylow’s theorem

Sylow’s theorem lets us extract information about the structure of p-subgroups
inside a group G given only the data |G|.

Theorem 3.1 (Sylow). Let G be a group of order pkm, where p doesn’t di-
vide m. A subgroup of order pk in G is then called a Sylow p-subgroup. The
following statements hold:

(1) Sylow p-subgroups exist;

(2) Any two Sylow p-subgroups are conjugate in G (hence isomorphic);

(3) The number of Sylow p-subgroups np ≡ 1 mod p. Moreover np = [G :
NG(P )] for any Sylow p-subgroup P ; hence, by Euclid’s lemma, np divides
m.

Corollary 3.2. A Sylow p-subgroup is normal in G if and only if it is the
unique Sylow p-subgroup in G, i.e., np = 1.

Let us look at some examples. First, recall the following:

Proposition 3.3. A subgroup H of index 2 in G is normal.

Proof. The left and right cosets partition G, so G = H t gH = H tHg for any
g 6∈ H. This implies that gH = Hg for all g ∈ G as desired.

Proposition 3.4. Any group G of order 30 has a normal subgroup of order
15.

Proof. By the above proposition, any subgroup of order 15 is automatically
normal. Thus it suffices to show that such a subgroup exists. Now 30 = 2 ·3 ·5;
in particular, by Sylow’s theorem (or the weaker theorem of Cauchy), subgroups
of order 3 and 5 exist. If either of them if normal in G, then their product is
a subgroup of order 15 and we are done.

So suppose that n3 > 1 and n5 > 1 (cf. Corollary 3.2). By the divisibility
relation in Sylow’s theorem, n3 must divide 10 and n5 must divide 6. Also,
we must have n3 ≡ 1 mod 3 and n5 ≡ 1 mod 5. Thus the only possibility is
n3 = 10 and n5 = 6. By Lagrange’s theorem, distinct Sylow 5-subgroups must
intersect in the identity (since the intersection of subgroups is a subgroup and 5
is prime). Hence the 6 Sylow 5-subgroups yield 4 distinct non-identity elements
each for a total of 24 elements of order 5. Similarly, the 10 Sylow 3-subgroups
provide in total 10 · 2 = 20 elements of order 3, a contradiction since G only
has order 30.

3


